Four Different Methods Comparison for Extraction of Astaxanthin from Green Alga Haematococcus pluvialis
نویسندگان
چکیده
Haematococcus pluvialis is one of the potent organisms for production of astaxanthin. Up to now, no efficient method has been achieved due to its thick cell wall hindering solvent extraction of astaxanthin. In this study, four different methods, hydrochloric acid pretreatment followed by acetone extraction (HCl-ACE), hexane/isopropanol (6:4, v/v) mixture solvents extraction (HEX-IPA), methanol extraction followed by acetone extraction (MET-ACE, 2-step extraction), and soy-oil extraction, were intensively evaluated for extraction of astaxanthin from H. pluvialis. Results showed that HCl-ACE method could obtain the highest oil yield (33.3±1.1%) and astaxanthin content (19.8±1.1%). Quantitative NMR analysis provided the fatty acid chain profiles of total lipid extracts. In all cases, oleyl chains were predominant, and high amounts of polyunsaturated fatty acid chains were observed and the major fatty acid components were oleic acid (13-35%), linoleic acid (37-43%), linolenic acid (20-31%), and total saturated acid (17-28%). DPPH radical scavenging activity of extract obtained by HCl-ACE was 73.2±1.0%, which is the highest amongst the four methods. The reducing power of extract obtained by four extraction methods was also examined. It was concluded that the proposed extraction method of HCl-ACE in this work allowed efficient astaxanthin extractability with high antioxidant properties.
منابع مشابه
Studies on the genetic variation of the green unicellular alga Haematococcus pluvialis (Chlorophyceae) obtained from different geographical locations using ISSR and RAPD molecular marker.
Haematococcus pluvialis (Flotow) is a unicellular green alga, which is considered to be the best astaxanthin-producing organism. Molecular markers are suitable tools for the purpose of finding out genetic variations in organisms; however there have been no studies conducted on ISSR or RAPD molecular markers for this organism. The DNA of 10 different strains of H. pluvialis (four strains from Ir...
متن کاملAntioxidant role of astaxanthin in the green alga Haematococcus pluvialis
The green unicellular alga, Haematococcus pluvialis has two antioxidative mechanisms against environmental oxidative stress: antioxidative enzymes in vegetative cells and the antioxidative ketocarotenoid, astaxanthin, in cyst cells. We added a reagent that generates superoxide anion radicals (O2 ), methyl viologen, to mature and immature cysts of H. pluvialis. Tolerance to methyl viologen was h...
متن کاملEvaluation of factors promoting astaxanthin production by a unicellular green alga, Haematococcus pluvialis, with fractional factorial design.
Factors affecting the astaxanthin production by a unicellular green alga, Haematococcus pluvialis UTEX 16, were evaluated with sequential fractional factorial design. To simulate an actual production mode, a two-stage process was adapted for astaxanthin production: the alga was first cultivated under vegetative growth conditions, and then astaxanthin production was induced by applying various i...
متن کاملStress-related differential expression of multiple beta-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis.
The unicellular green alga Haematococcus pluvialis is used as a biological production system for astaxanthin. It accumulates large amounts of this commercially interesting ketocarotenoid under a variety of environmental stresses. Here we report the identification and expression of three different beta-carotene ketolase genes (bkt) that are involved in the biosynthesis of astaxanthin in a single...
متن کاملCorrection: Organization of Astaxanthin within Oil Bodies of Haematococcus pluvialis Studied with Polarization-Dependent Harmonic Generation Microscopy
Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014